
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Winter 2019

1 Instructor: Daniel Llamocca

Homework 1
(Due date: January 17th @ 5:30 pm)

Presentation and clarity are very important!

PROBLEM 1 (27 PTS)
a) Simplify the following functions using ONLY Boolean Algebra Theorems. For each resulting simplified function, sketch the

logic circuit using AND, OR, XOR, and NOT gates. (14 pts)

✓ 𝐹 = �̅�(𝐵 + 𝐶̅) + 𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
✓ 𝐹(𝑋, 𝑌, 𝑍) = ∏(𝑀2, 𝑀4, 𝑀6, 𝑀7)

✓ 𝐹 = (𝑍 + 𝑋)(�̅� + �̅�)(�̅� + 𝑋)

✓ 𝐹 = (𝑋 + 𝑌̅̅ ̅̅ ̅̅ ̅̅)𝑍 + �̅��̅��̅�̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

b) Using ONLY Boolean Algebra Theorems, demonstrate that the XOR operation is associative: (5 pts)
(𝑎𝑏)𝑐 = 𝑎(𝑏𝑐) = 𝑏(𝑎𝑐)

c) For the following Truth table with two outputs: (8 pts)

▪ Provide the Boolean functions using the Canonical Sum of Products (SOP), and Product of Sums
(POS).

▪ Express the Boolean functions using the minterms and maxterms representations.
▪ Sketch the logic circuits as Canonical Sum of Products and Product of Sums.

PROBLEM 2 (25 PTS)

a) Construct the truth table describing the output of the following circuit and write the simplified Boolean equation (6 pts).

𝑓 =

b) Complete the timing diagram of the logic circuit whose VHDL description is shown below: (6 pts)

library ieee;

use ieee.std_logic_1164.all;

entity circ is

 port (a, b, c: in std_logic;

 f: out std_logic);

end circ;

architecture struct of circ is

 signal x, y: std_logic;

begin

 x <= a xor (not c);

 y <= x nand b;

 f <= y and (not b);

end struct;

x y z

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

f1 f2

0 0

1 0

1 1

1 1

1 0

0 1

1 1

0 1

a

f

b

c

f

x

z

y

x y z

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

f

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Winter 2019

2 Instructor: Daniel Llamocca

c) The following is the timing diagram of a logic circuit with 3 inputs. Sketch the logic circuit that generates this waveform.
Then, complete the VHDL code. (8 pts)

library ieee;

use ieee.std_logic_1164.all;

entity wav is

 port (a, b, c: in std_logic;

 f: out std_logic);

end wav;

architecture struct of wav is

-- ???

begin

 -- ???

end struct;

d) Complete the timing diagram of the following circuit: (5 pts)

PROBLEM 3 (25 PTS)
▪ A numeric keypad produces a 4-bit code as shown below. We want to design a logic circuit that converts each 4-bit code to

a 7-segment code, where each segment is an LED: A LED is ON if it is given a logic ‘1’. A LED is OFF if it is given a logic ‘0’.
✓ Complete the truth table for each output (𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔).

✓ Provide the simplified expression for each output (𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔). Use Karnaugh maps for 𝑐, 𝑑, 𝑒, 𝑓, 𝑔 and the Quine-

McCluskey algorithm for 𝑎, 𝑏. Note: It is safe to assume that the codes 1100 to 1111 will not be produced by the keypad.

a

b

c

d

e

f
g

6:

X Y Z W

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

a b c d e f g

1 1 1 1 0 1 1

Value

0

1

2

3

4

5

6

7

8

9

P

H

1 2 3

4 5 6

7 8 9 ? 7

x

y

z

w

1:0: 2: 3: 4:

7: 9:8:

H 0 P

5:

P: H:

a

f

b

c

f

b

a

a

f

b

c
c

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Winter 2019

3 Instructor: Daniel Llamocca

PROBLEM 4 (12 PTS)
▪ Design a logic circuit (simplify your circuit) that opens a lock (𝑓 = 1) whenever the user presses the correct number on each

numpad (numpad 1: 7, numpad2: 2). The numpad encodes each decimal number using BCD encoding (see figure). We
expect that the 4-bit groups generated by each numpad be in the range from 0000 to 1001. Note that the values from

1010 to 1111 are assumed not to occur.

Suggestion: Create two circuits: one that verifies the first number (7), and another that verifies the second number (2).
Then perform the AND operation on the two outputs. This avoids creating a truth table with 8 inputs.

PROBLEM 5 (11 PTS)
▪ The following die has a sensor on each side. Whenever a side rests on a surface, the sensor on that side generates a logic

‘1’ (transmitted wirelessly to a controller); otherwise, it generates a ‘0’. The sensors outputs are named S1, S2, S3, S4, S5, S6.

▪ We want to design a circuit that reads the state of the 6 sensors and outputs a 3-bit value L representing the decimal value

(unsigned integer) of the opposite side (upper surface). The output L is connected to 3 LEDs: A LED ON is represented by

a logic ‘1’, while the LED OFF is represented by ‘0’. For example, in the figure below:

✓ The resting side has six dots. This means that the state of the sensors is S6=1, S5=0, S4=0, S3=0, S2=0, S1=0.

✓ The opposite side (upper surface) has one dot representing the decimal number ‘1’. Thus, the output L must be 001.

▪ Under normal operation, we expect only one sensor activated at a time. However, due to a variety of problems, we might
have the following cases:
✓ Two or more sensors produce a ‘1’ at the same time: Here, the state of the LEDs must be 000.

✓ No sensor produces a ‘1’: In this case, the state of the LEDs must be 000.

▪ Using the state of the sensors as inputs, provide the Boolean expression for each LED: L2, L1, L0. First, build the truth

table where the inputs are S6-S1 and the outputs are L2-L0.

Numpad 1

Numpad 2

x y z w

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

Number

pressed

0

1

2

3

4

5

6

7

8

9

1 2 3

4 5 6

7 8 9

0

1 2 3

4 5 6

7 8 9

0

BCD code

x y z w

x y z w ?
F

a
b
c
d
e
f
g
h

Resulting

number: 1

?
S6

S5

S4

S3

S2

S1

3 L

L0

L1

L2

L2 L1 L0

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Number

-

1

2

3

4

5

6

-

State of Sensors
S6 S5 S4 S3 S2 S1

1 0 0 0 0 0

